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These lecture notes are an informal version of the lecture notes on the quantum
time evolution, though perhaps more accessible as a first read. Be aware that the
conventional notation slightly differs between the two lecture notes and that some
important notions might lack deserved accenting.

1. Introduction

Last time, we saw that quantum states are merely vectors in a vector space. But last
time, we only considered static states. None of our states had an element of time evolu-
tion in them. In other words, the states we considered were taken at a particular time.
We would like to upgrade our states to contain the notion of time, if not motivated by
the direct observation that we do, in fact, seem to live in a world governed by time.

Let us pour the whiskey and stuff the pipes, whilst we try not to butcher the math-
ematics as much. Consider a system that is at time some constant time t = ty repre-
sented by the state vector,

la) = |a, to) .

In the second line we specifically label that the state describes the system at time .
This is not too difficult to generalise to an arbitrary time, we could denote the state of
the system after evolving it to an arbitrary time ¢ > t starting from the state at fo by

la, t) = |, to; £) .

It is good to understand the initial time from where we transform the system, but we
often let this be obvious from the context to avoid cluttering the equations. Secondly,
the semi-colon is there to remind us that the ¢ is not some sort of eigenvalue of a time
operator T, we are not ready for string theory yet. We are viewing the ket as a function
of time, so the notation |«) (t) would be more appropriate, though more confusing.
Having set the stage, we but need to relate the time-evolved state |, tp; ) to the
initial state |, fp). How can we do this? If we, briefly, consider our system to be a
not-so-very-free particle, then at some specific moment in time, the state of the particle
will (among other quantum numbers) be determined by its momentum value. If we
let the system go for a bit, then at a later time, the state of the particle will now be
determined by a different momentum. Both of these states are described by vector
in the vector space, but they will be different. So, in order to determine the relation
between the initial and evolved state, we need to relate two vectors in the vector space.
This is generally done by a linear map or a matrix, taking the first vector and outputting
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the second. Translating back to the quantum jargon, a linear map corresponds to an
operator. In essence, we postulate that there exists a so-called time-evolution operator
such that

o, to; t) = U(t, to) |a, to),

taking a state at time t to a different state at an arbitrary time ¢.

2. Properties of the time-evolution operator

Let’s keep things trivial for now. What happens when we consider no time evolution
at all? Mathematically, we mean

o, to; to) = U (to, to) |, to)
or a bit better mathematically,
lim |a, to; £) = Um U(¢, to) |a, to) -
lim [a, to; £) = Lim U(t, to) |at, to)
What we are doing is taking the state — the vector — to itself. In terms of linear algebra,

the linear map should be the identity, which translates to saying that the time evolution
operator is given by

lim U(t, to) = U(to, to) = 1

t—)to

where 1 is the operator that takes a state to itself, i.e. the identity operator. When we
represent the operator 1 using a matrix, it would, of course, be the identity matrix,

o O
S = O
— O O

This is a property we require from our time-evolution operator.
Secondly, we could transform a state twice. Consider first a transformation from a
state |, to) to the state |a, t1), explicitly given by

|, t1) = U(t1, to) |, to)
and we then transform the state |a, t1) to a state |a, t2), which is explicitly given by
la, t2) = U(tr, t1) |a, t1) .
Putting these transformations in sequence, we find
&, 1) = U(ta, t1) |, 1) = U(ta, 1)U (ty, to) |, to) - (1)

Do notice that we are already very handwavy with the notation of the states by not
writing down the initial time. This should be clear by looking at the time-evolution
operator U.
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But we could also consider the time evolution of the state |«, tp) immediately to the
state |a, tp), which is given by

|06, t0> :Z/A{(tz, to) |06, t0> . (2)
By comparing Egs. (1) and (2), we find that
Z/A{(tz, to) = Z/Al(tz, tl)Z/A{(tl, to)

In other words, we expect the time-evolution operator to decompose multiplicatively
under intermediate time steps. This is a second property we require of the time-
evolution operator.

3. Physiking the magik

We can exhaust the first property a bit better, if we are willing to evoke the anger of
the mathematicians. We are willing. Let us consider an initial state at some arbitrary
|a, t) and evolve it through time with an infinitesimal time step dt, giving the state
|a, t + dt). We may write

|, t +dt) = U(t +dt,t) |a, t).
But from the first property we know that

im U(t+dt, t) =U(Lt) = 1.
Jm U+ de ) =t

So, if we choose a value for dt that is really, really close to zero, then U (t+dt, t) is
really, really close to 1. As any physicist can attest, this naturally calls for a Taylor
expansion. We can write the time-evolution operator /(¢ 4 dt, t) as a polynomial in dt
starting around 1. Note that if dt is really small, then (dt)? = dt? is even really smaller,
and its even smaller for higher powers of dt. Formally, the Taylor expansion is given

by
p _i e (=1)? a2 0 3
U(t+dtt) =1 —iOdt + 5 0%+ O (dt

Here () is an operator that, formally said, generates the time evolution; we return to
this momentarily. The complex constant (—i) is chosen for later convenience, but is
merely a notational choice. Don't let it scare you off; you may ignore it or you may
absorb it into the operator by defining @ = —i(), in which case the Taylor expansion
would read the more familiar,

U(t+dtt) =1+ @dt + %@2dt2 +0 <dt3) .

We will proceed with the factor (—i), but you are welcome to do the analysis without
it.

To understand the Taylor expansion, we need to interpret the operator (). We do
so the physics way: The first term in the Taylor expansion 1 has no associated units
to it. The second term —i()dt should therefore be unitless. (It does not make sense
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to add metres to seconds; if one term is dimensionless, we can only add to it other
dimensionless quantities.) Since dt has units of seconds s, the operator () should have
units of one over seconds 1/s. Moreover, it should somehow contain the constant %
since, after all, we are discussing quantum mechanical states. We could work out the
units and see what we end up with, but we could be a bit smarter and recall that we
have a familiar equation in physics relating the energy E of a photon to its frequency v
(with units 1/s) by,

E=hv — 7 = v
We could therefore postulate that () is an operator related to energy divided by #. But!
We have an operator related to energy, namely the Hamiltonian! Therefore, we are
going to make the humble guess that

A

el
-

The Taylor expansion of the time-evolution operator then becomes to first order in dt,

O =

A(t+dtt) =1- i%dt +0 <dt2) .

We care only about first order, because we will soon send dt so close to zero that dt?
becomes entirely negligible compared to dt.

Having extracted all this information, let us, for the sake of fun, choose an initial
state |, fo) and transform it for an arbitrary amount of time ¢ to the time |a, t) and then
just transform a slightly more, |a,t 4+ dt), where df is one such infinitesimal value. In
terms of the time-evolution operators, this reads

U(t+dt, to) = U(t+dt, HU(t, t).

The first term on the left-hand side looks familiar. We use the Taylor expansion and
find,
i

U(t+dt,tg) = (i — Hdt) U(t, to)

Ny

=U(t, ty) — %dtHZf{(t, to).
We subtract both sides with Z(t, to) to find,
U(t+dt, to) —U(t, ty) = —%dtHZf{(t, to)

We now divide both sides with dt and formally take the dt — 0 limit, so that

lim U(t + dt, to) — U(t, to)
dt—0 dt

inon

The first term looks familiar, this is the definition of the derivative with respect to time.
Thus, finally,

U(t tg) i

o HU(t, ty),

S|
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or upon yeeting the constants to the other side,

ihw = HU(t, to).

If we reinstate the states, we obtain
oy O -~ A
Zhg[/{(t, to) ’(X, t0> = HU(t, to) ‘DC, t0> ,
and we can evolve the states to obtain,
iha o, t) = H |a, t) 3)
ot T

This is the ever-so-famous Schrodinger equation for the time-evolution operator. What
this equation is saying to us is that, if such a time-evolution operator U/ exists, then it
must satisfy this Schrodinger equation.

4. Wavefunctions of sorts

We will investigate the existence of this time-evolution operator later, but perhaps it is
useful to first consider an example familiar to us. Harmonic oscillator time:

02

. 21
H:p—+—w2x

2m 2

We know that p acts on the position space |x) as a spatial derivative. What this means
is that, though it might be difficult, we know how H acts on the position basis, H |x).
Upon daggering, this becomes

(0 |x)" = (x| A" = (x| A

since H is Hermitian or self-adjoint (since it needs to have real eigenvalues). If you
need refreshing on this, you might do yourself a favour by reading the lecture notes on
states in quantum mechanics (to be written and published).

In order to get information out of H |a,t), we could act with (x|. We assume that
|a, t) does not depend on x, so that we my write the Schrodinger equation Eq. (3) as,

. 0 A
zhg (x|a,t) = H (x|a, t)

Mathematically, what we are doing is projecting the |a, f) state onto the |x) basis, We
will now make a definition, named the position wavefunction,

Pu(x,t) = (x|a, f)

where we often drop the subscript a. The Schrédinger equation then reads

., 0 A
zhgzp(x, t) = Hy(x,t),
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called the Schrodinger (position) wave equation. The wave functions ¢ (x,t) are the
coefficients of the state with respect to the position basis.

We could repeat this entire analysis exactly with the momentum states |p). We
would then define the momentum wavefunction

p(p,t) = (pla,t),

so that we get the Schrodinger (momentum) wave equation,

.0 :
ihz,¢(p.t) = He(p,t).

Since |x) and |p) are related by a Fourier transform, the position wave function {(x, t)
and the momentum wave function ¢(p, t) are also related by a Fourier transform. More
on this later.

The wave equation formalism is useful when we want to express and calculate time
evolution of states purely in terms of the known basis that is position basis.

5. Solving the Schrodinger equation explicitly

So far we have manifested a time-evolution operator and provided the properties it
requires. Having manipulated these properties, we found the ultimate defining equa-
tion for the time-evolution operator: namely the Schrodinger equation. It remains to
solve this Schrodinger equation to explicitly write the time-evolution in terms of the
Hamiltonian.
This is easily done if the Hamiltonian does not explicitly depend on time. When
observing the Schrodinger equation,
d 7 o an
3 (t,to) = —5 AU, to)
If we so humble treat the operators as normal linear functions, then we see that the
time-evolution operator is a function such that taking a time derivative of this function,
we get back the exact same function with a pre-factor of — %PAI . This function is of course
the exponential. Naively, we thus expect,

U(t, ty) = exp {—%H (t — to)} :

Unfortunately, we are dealing with operators, not functions. Fortunately, we can
just define the exponential of an operator as

exp{A} :1+A+%A2+%A3+....
The reader can use this definition to use the exponential expression for the time-evolution
operator and show it satisfies the Schrodinger equation for time-independent Hamil-
tonian.
What about time dependent Hamiltonians? Well, in the time independent case, we
could smartly write the solution as

A ] A t
M(t,to):exp{—%H- dt'}.

to
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One can show that in the time dependent case, as long as the Hamiltonian commutes
at different times, i.e. H(t1)H(tp) = H(tp)H(t1), we find that the solution is given by

ot
U(t, to) :exp{—%-/t H(t')dt'}.
0

Once again, this is left as an exercise to the viewer.

For the general case, however, we cannot write the solution in terms of an expo-
nential, unfortunately. The general solution is called the Dyson series and is explicitly
given by an infitude of integrals,

t ty
/tdtl dt; H(t1)H(tp) + ...

0 to

— N2
Ut ty) =1+ 1/ A(tdt + (—1>
it h
As one may guess by now, this too is left as exercise to the reader.

Having solved the equations for the time-evolution operator, we see that the solu-
tion of it is explicitly given by some function of the Hamiltonian. It now makes sense
when we say that the Hamiltonian governs the time evolution of states. The temporal
dynamics of states is entirely determined by the Hamiltonian.
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