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1. Introduction

In this brief paper of lecture notes, we build the necessary mathematical framework
to describe the simplest of quantum mechanical systems. This framework is the field
of linear algebra. We will begin by formally defining a vector space that inhabits the
vectors. We will consider many properties of these spaces, among which subspaces,
bases, and dimension. We will then consider linear maps between vector spaces that
introduce a sense of moving through them. The linear maps turn out to be equiva-
lent to matrices. We will extract many properties of the matrices, like the transpose
and determinant. Finally, we cover the method discovering special vectors and scalars
associated to matrices, namely the eigenvectors and eigenvalues.

Beware. This paper is a work in progress and may contain mistakes and miscon-
ceptions. Please notify the authors if you find any.

2. Notations

In the following document, we make use of the convention for notation:
Scalars λ, a, b, c, . . .
Vector spaces V, W, . . .
Vectors v, w, . . .
Basis vectors ei
Dual space V∗

Dual vectors ω, ξ, . . .
Dual basis vectors θi
Field F

Matrices M, N, . . .
Adjoint M†

Complex conjugate v̄
Linear maps L(V, R)
Hilbert space H
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3. Vector spaces

The notion of vectors is one that is familiar in classical physics when more than one
dimension is considered. An obvious example of a vector is the Newtonian force on an
object, that usually is represented by an arrow-like object. Familiar readers will know
that forces can be added and scaled appropriately by adding these arrows tail to end.
In this chapter, we seek to formally define vector spaces and extract their multitude of
interesting properties.

3.1. Definition

We begin by formally stating the definition of a vector space.

Definition 3.1 (Vector spaces). Let V be a non-empty mathematical set. Then V is called a
vector space over F (where F usually stands for R and C) if the following axioms are satisfied.

1. For all v, w ∈ V, we have v + w = w + v. (Commutativity)

2. For all v, w, z ∈ V, we have v + (w + z) = (v + w) + z. (Associativity)

3. There exists an element 0 ∈ V such that v+ 0 = v for all v ∈ V. (Identity of addition)

4. For all v ∈ V, there exists an element (−v) ∈ V such that v + (−v) = 0. (Existence
of additive inverse)

5. For all v ∈ V and λ, µ ∈ F, we have λ(µv) = (λµ)v. (Compatibility of scalar
multiplication)

6. There exists an 1 ∈ F such that 1v = v for all v ∈ V. (Identity of multiplication)

7. For all v, w ∈ V and λ ∈ F, we have λ(v + w) = λv + λw. (Vector distributivity)

8. For all v ∈ V and λ, µ ∈ F, we have (λ + µ)v = λv + µv. (Scalar distributivity)

When F = R we call V a real vector space, and when F = C we call V a complex
vector space1. Elements of V are called vectors and elements of F are usually called
scalars. These axioms ensure that vectors behave nicely under addition and scalar
multiplication. Notice that we now have a definition for the notion of a vector that
is significantly different from the physicist’s: "a vector is an object that behaves like a
vector". Regardless, the reader should be cautious to view vectors as physical objects
like arrows in a geometric space. The concept of vectors here is abstract, and sometimes
it makes no sense to attach a notion of geometric direction to them.2

More often than not, we forgo mentioning the scalar field F when considering a
vector space V and leave it understood to the context. When we say "consider a vector
space V. . . ", what we mean is "consider a vector space V over a field F. . . ".

It bears fruitful to consider an example in action; arguably, one that is the most
important for us.

1In fact, one could consider vector spaces over an arbitrary F as long as F is a so-called field. Infor-
mally, this means that F behaves nicely under addition, subtraction, multiplication and division. Both
R and C are examples of fields.

2Consider, for example, the RGB vectors MAKiT is fond of showing off. More generally, in general
relativity it turns out that we cannot even consider distance or velocity vectors as arrows between two
points in spacetime; we must view them as abstract (local) vectors.
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Example 3.2 (Real n-tuples). Consider the set of the n-tuples of real numbers. Explicitly,
what we mean by the n-tuples of real numbers is the set

Rn =

v =


v1
v2
...

vn

 with v1, v2, . . . , vn ∈ R

 .

We wish to show that Rn is a vector space, for which we must demonstrate that all
eight axioms are satisfied for V = Rn and F = R. In order to proceed, we first need
to define addition and scalar multiplication for the n-tuples to be able to check for the
axioms. We define addition and scalar multiplication of n-tuples point-wise. For two
elements v, w ∈ Rn, we can write

v =


v1
v2
...

vn

 and w =


w1
w2
...

wn

 ,

for some v1, . . . , vn, w1, . . . , wn ∈ R. The addition v + w is then defined as the n-tuple,

v + w =


v1
v2
...

vn

+


w1
w2
...

wn

 =


v1 + w1
v2 + w2

...
vn + wn

 .

Similarly, scalar multiplication is defined for v ∈ V and λ ∈ R as

λv = λ


v1
v2
...

vn

 =


λv1
λv2

...
λvn

 .

Let us now show the proof for the axioms of commutativity and vector distributiv-
ity as an example. Let us consider two elements v, w ∈ Rn,

v =


v1
v2
...

vn

 and w =


w1
w2
...

wn

 ,

for v1, . . . , vn, w1, . . . , wn ∈ R. For two real numbers a, b ∈ R, we know that they
commute, a + b = b + a, thus

v + w =


v1
v2
...

vn

+


w1
w2
...

wn

 =


v1 + w1
v2 + w2

...
vn + wn

 =


w1 + v1
w2 + v2

...
wn + vn

 =


w1
w2
...

wn

+


v1
v2
...

vn

 = w + v.
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The commutativity of n-tuples directly follows from the commutativity of R. To show
the distributivity of vectors, consider additionally an λ ∈ R. Then,

λ(v + w) = λ




v1
v2
...

vn

+


w1
w2
...

wn


 = λ


v1 + w1
v2 + w2

...
vn + wn

 =


λ(v1 + w1)
λ(v2 + w2)

...
λ(vn + wn)



=


λv1 + λw1
λv2 + λw2

...
λvn + λwn

 =


λv1
λv2
· · ·
λvn

+


λw1
λw2
· · ·

λwn

 = λ


v1
v2
...

vn

+ λ


w1
w2
...

wn

 = λv + λw.

Here we use that for a, b, λ ∈ R, we have λ(a + b) = λa + λb. Once again, vector
distributivity follows from distributivity of elements in R. ∇
Exercise 3.3. Complete the previous example and show that the remaining six vector
space axioms are also satisfied for V = Rn and F = R, proving that Rn is a vector
space over R. Make sure that every step is justified by using the defined addition and
multiplication and using the assumed properties of R. △

A vector in Rn is thus a n-tuple of length n with real numbers as entries, where the
scalars are single real numbers.

This is, of course, the usual notion of a vector we are familiar with. The reader
should make sure that this example is clear in the new machinery, as we will refer to
this example in almost all further developments on vector spaces.

Having set the stage, there is an immediate generalisation.

Example 3.4. Consider the set of n-tuples of complex numbers,

Cn =

z =


z1
z2
...

zn

 with z1, z2, . . . , zn ∈ C

 ,

with addition and scalar multiplication defined piecewise. One can show that Cn is
a vector space over C in precisely the same way we showed that Rn is a vector space
over R. ∇
Exercise 3.5. If you need more practise with the axioms, show that Cn with piecewise
addition and multiplication is a vector space over C. △
Exercise 3.6. If you need more practise with the axioms but the preceding example was
too easy, consider for a nonempty fixed set S the set of functions ,

FS = { f : S → F} ,

i.e. an f ∈ FS is a function f : S → F that takes elements x ∈ S to f (x) ∈ F. For all
f , g ∈ FS and λ ∈ F, define the addition f + g ∈ FS and scalar multiplication λ f ∈ FS

as,

( f + g)(x) = f (x) + g(x) and (λ f )(x) = λ( f (x)),

for all x ∈ S. Show that FS forms a vector space over F. △
From now on, V is always a vector space over a field F unless specifically men-

tioned otherwise.
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3.2. Subspaces

Often, we are dealing with smaller spaces within vector spaces that we desire to behave
nicely. Preferably, we would like the smaller space to act as a vector space. For this, we
write the following definition.

Definition 3.7. Consider a subset W ⊂ V. Then W is a subspace of V is the following
conditions are satisfied.

1. For all v, w ∈ W, we have v + w ∈ W. (Closed under addition)

2. For all v ∈ W and λ ∈ F, we have λv ∈ W. (Closed under scalar multiplication)

3. We have 0 ∈ W. (Identity of addition)

Since all elements of W are inside V, the subspace W induces the axioms from the
vector space V. Together with the three conditions for subspaces, this ensures that a
subspace W itself is a vector space.

Exercise 3.8. Prove that a subspace is a vector space by accounting for all the vector
space axioms.

3.3. Linear independence and bases

The vector addition, natural as it may be, provides us with elegant ways to manipulate
vectors. First of all, we can add and scale several vectors to obtain new vectors.

Definition 3.9 (Linear combination). Suppose we have the vectors v1, . . . , vm ∈ V and the
scalars λ1, . . . , λm ∈ F. Then the vector w ∈ V defined by

w = λ1v1 + · · ·+ λmvm, (1)

is called a linear combination of v1, . . . , vm.

The set of all linear combinations of some vectors v1, . . . , vm ∈ V, called the span
and denoted by span(v1, . . . , vm), turns out to be a subspace of V. We can explicitly
write the span as,

span(v1, . . . , vm) = {λ1v1 + · · ·+ λmvm : λ1, . . . λm ∈ F}.

Exercise 3.10. For some fixed vectors v1, . . . , vm ∈ V, prove that span(v1, . . . , vm) is a
subspace of V. Hint: Use the definition of a subspace.

Definition 3.11. Let v1, . . . , vm ∈ V be fixed vectors. If span(v1, . . . , vm) = V, then
v1, . . . , vm is said to span V.

Now, consider we have vectors (v1, ..., vn), then they cover the subspace span(v1, ..., vn).
Let w = λ1v1 + ... + λnvn be some linear combination of our vectors, then if we con-
sider span(v1, ..., vn, w) it is the exact same as the subspace span(v1, ..., vn). The vec-
tor w is then redundant and we can drop it from consideration. In general, if any
vector vi is a linear combination of v1, ..., v̂i, ..., vn then span(v1, ..., vn) is the same as
span(v1, ..., v̂i, ..., vn). This motivates the next definition.

Remko Osseweijer and Ashhad Shahzad
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Definition 3.12. Let v1, . . . , vm ∈ V be vectors. Then v1, . . . , vm are said to be linearly
dependent if there exist λ1, . . . , λm ∈ F with at least one nonzero, such that

λ1v1 + · · ·+ λmvm = 0.

We say that v1, . . . , vm are linearly independent if all λ1, . . . , λm must be zero to satisfy the
above equation.

Note that if two such scalars are nonzero, say λi and λj, then we can express vi in
terms of vj, i.e. vi depends on vj. Only when all λ1, . . . , λm are zero can we truly not
express any vector from v1, . . . , vm in terms of the others.

We have come to the climax of the material.

Definition 3.13 (Bases). Suppose that v1, . . . , vm ∈ V that are linearly independent and
span(v1, . . . , vm) = V. Then we call {v1, . . . , vm} a basis of V.

Clearly, this basis would not be unique; we could simply replace v1 with λv1 for
any nonzero and non-one λ ∈ F and obtain a different basis for V.

Definition 3.14. Any vector space V that can be spanned by a finite number of vectors
v1, . . . , vm ∈ V is called a finite-dimensional vector space. A vector space that is not
finite-dimensional is called an infinite-dimensional vector space.

Immediately , we will for now assume our vector space V is finite-dimensional.
[bla bla]

Lemma 3.15. Two different bases of a vector space have the same number of elements

Definition 3.16. The number of vectors in a basis for a vector space V is called the dimension
of V, denoted by dim V.

Lemma 3.17. Every finite-dimensional vector space has a basis.

Exercise 3.18. Prove the previous lemma. Hint: Think on how the vectors that span the
vector space can be made linearly independent.

After all those definitions and statements, the time must be ripe to treat an example
in greater detail. Naturally, we come back to our vector space Rn from which we know
our vectors as column arrays.

Example 3.19. Basis for Rn.

4. Linear functions

4.1. Linear Maps

Suppose we have two arbitrary vector spaces V and W. We would like to set up a
relationship between the elements of V and W however we cannot do this arbitrarily.
The reason why vector spaces are so useful is because of their linear structure, and so

Remko Osseweijer and Ashhad Shahzad
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the maps between vector spaces must preserve that structure. We then axiomatize the
following properties of a linear map T : V → W.

T(v1 + v2) = T(v1) + T(v2)

T(λv1) = λT(v1)

T(0V) = 0W

The last property asserts that the additive identity in V map to the additive identity
in W. It is derivable from the other axioms but we state it here since it is a useful
property to consciously have in mind. The set of all linear maps from V to W is denoted
L(V, W). We write the space of linear maps from V to itself as simply L(V). It turns
out we can also endow L(V, W) with a vector space structure, note we already have

λT(v1) = T(λv1)

If we assert now that for any two maps T, S ∈ L(V, W) we have

(T + S)(v1) = T(v1) + S(v1)

Then it turns out that L(V, W) is indeed a vector space.

Exercise 4.1. Verify that L(V, W) satisfies the axioms of a vector space. (Hint: It may
be useful to fix an arbitrary vector for the linear maps to act on).

At first glance it not be obvious how such maps are useful, so below are a few
examples

Example 4.2. Consider the ring of all polynomials in the variable x over R denoted by
R[x]. Differentiation is then a linear map L(R[x]) since for any polynomials p(x), q(x)
and real numbers a, b

d
dx

(ap(x) + bq(x)) = a
d

dx
p(x) + b

d
dx

q(x)

Exercise 4.3. Prove that definite integration as a map in L(R[x], R) defined as

p(x) 7→
∫ b

a
p(x)

is a linear map. Moreover, prove that multiplication by a polynomial, such as x2, is a
linear map in L(R[x]).

Now suppose we have a Linear map T ∈ L(U, V) and S ∈ L(V, W). The composi-
tion of these two maps is then given by their successive application

ST(u) = S(T(u))

It is important to keep in mind that compositions such as above only make sense
when the range of the first operator (here T) is a subset of the domain of the second
operator (here S). The key properties of the composition of linear maps are

Remko Osseweijer and Ashhad Shahzad
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1. For linear maps T1, T2, T3, whenever the composition

T1T2T3(u)

is well defined (in the sense of agreement in the range and domain of successive
operators) the composition is associative, i.e.

(T1T2)T3(u) = T1(T2T3(u))

2. For a linear operator L(V, W) we have

IW T(v) = TIV(v) = T(v)

Where IW and IV are the identity operators on W and V

3. For linear operators S and T1, T2, if the compositions ST1 and ST2 are well defined
then composition is distributive, i.e.

S(T1 + T2)(v) = ST1(v) + ST2(v)

It is important to note that composition of linear maps is not in general commutative,
i.e ST ̸= TS

Exercise 4.4. Let differentiation in the variable x and multiplication by x3 be two linear
maps L(R[x]). Show that these two maps do note commute.

4.2. Linear functionals

A particularly interesting family of linear maps is one that goes from V to the field F,
so L(V, F). These maps are referred to as functionals on V. As we showed earlier,
the space L(V, F) has a vector space structure, what is interesting however, is that the
vector space has the same dimensionality as V.

We start by noting that if V has a basis {ei} then a linear functional T ∈ L(V, F)
acts on elements of V as follows

T(v) = T

(
∑

i
λiei

)
= ∑

i
λiT(ei)

Now, the linear functional T can be determined uniquely by its action on the basis
{ei}, since suppose there was a functional S such that S(ei) = T(ei) for all i, then the
linear functionals would agree on the decomposition of any vector v into the linear
combination of the basis, and thus v itself. The evaluation T(ei) for all i is a scalar of
the field F, and so for n basis vectors one would check the action of T on each basis,
yielding n scalars that are uniquely associated with T, and so T would be identified
with element of Fn.

To rephrase the isomorphism in more concrete terms, it is clear that every functional
T has a representation in Fn, when a basis on V is fixed, conversely for any element
f ∈ Fn one can construct a functional such that T(ei) = fi. Lastly the zero functional
corresponds to exactly the zero vector.

Remko Osseweijer and Ashhad Shahzad
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4.3. Matrices

We have covered the general concept of linear maps between vector spaces L(V, W)
as well as a representation of L(V, F) in terms of vectors of Fn. Since L(V, W) too is a
vector space, a natural question is how we can represent it concretely.

Recall that in the case of linear functionals, the action of T on any basis ei was a
scalar. For a general linear map, the action of T on a basis ei will result in some vector
wi in the target space. A general linear map too can be determined uniquely by its
action on the basis for the same reason as linear functionals can.

Since the action on each basis results in a vector wi ∈ W, the total action on n
basis vectors can be represented as a vector in Wn. If W is an m-dimensional vector
space then one can rewrite Wn = Fmn. And so we see that the space L(V, W) has
dimensionality dim(V)×dim(W).

Now we move on to write out a representation of the linear map as an element of
Fmn. Recall the action of T on a basis was given by

T(ei) = wi

= ∑
j

λji f j

Where we have expressed the vector wi in terms of the basis { f j} of the vector
space W. Now although T is an element of Fmn, it would be cumbersome and non-
enlightening to write out a single row or column with mn entries. Instead, a better way
is to write the action of T on the ith basis as one column and similarly for the other
basis vectors and write everything out as a grid of numbers

T =


λ11 λ12 . . . λ1n
λ21 λ22 . . . λ2n

...
... . . . ...

λm1 λm2 . . . λmn


And algebraically, the action of T on an arbitrary vector v can be written as

T(v) = T

(
∑

i
γiei

)
= ∑

i
γiT(ei)

= ∑
i

γiwi

= ∑
i

γi ∑
j

λji f j

= ∑
i,j

γiλji f j

Exercise 4.5. Let A be an m-by-n matrix and B an n-by-l matrix. Prove that the ik-th
entry of AB is given by

n

∑
j=1

AijBjk

Remko Osseweijer and Ashhad Shahzad
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4.4. Operations are properties of matrices

In this section we review some properties of a matrix that are useful in various physics
as well as computational contexts.

The first operation we’ll go over is the transpose. To motivate this operation, con-
sider a map T : V → W between vector spaces. Then it turns out that there is a
canonical map T∗ : W∗ → V∗ defined via

T∗(ϕ) := ϕ ◦ T

Where ϕ ∈ W∗. What this essentially means is that given a map T : V → W, we can
take our vectors from V to W and operate on them using the linear functionals in W∗,
and in doing so, we have a well defined notion on how the linear functionals W∗ act
on vectors in V, and so given the map T we can define T∗ as a map between the dual
spaces called the pullback of T.

To see where the transpose comes in, consider {ei} and { fi} to be bases of V and W
respectively, and {ei}, { f i} for the dual spaces. Now applying T∗ to f i and evaluating
it on ej we get (

T∗( f i)
)
(ej) = ( f i ◦ T)(ej)

= f i(T(ej))

= f i

(
∑
k

λkj fk

)
= ∑

k
λkjδ

i
k

= λij

This was one element, to get the rest of the row corresponding to f i we operate with
all basis vectors ej and obtain

T∗( f i) = ∑
j

λijej (2)

But note that the action of T on ei was given by

T(ei) = ∑
j

λji f j

We see that the indices denoting the rows and columns are swapped, in particular,
it turns out the rows and columns of T are interchanged to give T∗, and this is exactly
what the operation of transpose corresponds to

TT = T∗

It is also important to note that while the pullback T∗ is canonical, the transpose TT

is not since it depends on the coordinate representation of V and W.
Next, we turn attention to the determinant of a matrix. Such an operation is only

well defined for square matrices, or more accurately, for maps of the form T : Rn →
Rn. Geometrically, given the hyper-volume of a unit n-cube in the domain of T, the

Remko Osseweijer and Ashhad Shahzad
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determinant of T describes how the hyper-volume scales during the transformation.
A determinant of 2 implies that the unit n-cube has now twice the volume as before,
vice versa for a determinant of 1

2 . The determinant also encodes the orientation of
the transformation, in particular the negative sign indicates that the orientation has
flipped.

The determinant of a 2-by-2 matrix is given by∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

The determinant of a diagonal n-by-n matrix is given by∣∣∣∣∣∣∣∣∣
λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λm

∣∣∣∣∣∣∣∣∣ = ∏
i

λi

In general, the determinant is calculated using some cofactor BS that currently the
author does not have the energy to write out.

5. Eigenvectors and eigenvalues

From now on, we will be exclusively concerned with linear maps between the same
vector space V with dim V = n. These maps, as we have seen, can be represented by
n × n dimensional matrices. Given such a matrix A ∈ M(n, C), we could be interested
in a subspace W ⊂ V of V that is invariant under the matrix. In other words,the
vectors v ∈ W remain in W when they transform under A, so Av ∈ W for all v ∈ W.
We say that W is an invariant subspace of V under A. This would mean that the entire
subspace is isolated from the rest of the vector space.

It is this intriguing property that motives us to define the following properties of
matrices. We can consider a one-dimensional invariant subspace W = span(v) ⊂ V
for v ∈ V such that Av ∈ W. But W is the span of v and contains only scalar multiples
of v. In other words, the expression Av ∈ W is equivalent to saying Av = λv for some
λ ∈ F. Conversely, if we have some vector v ∈ V such that Av = λv, then we can
immediately conclude that the subspace span(v) is invariant under A.

This relation is so important that we gave it a name.

Definition 5.1. Let A be an n × n matrix. Then λ ∈ F is called an eigenvalue if Av = λv
for some nonzero v ∈ V. The associated vector v is called an eigenvector corresponding to
λ.

Thus, a matrix A has an eigenvalue λ if and only if it has a one-dimensional invari-
ant subspace. Moreover, we see that eigenvectors are only scaled upon transformation;
they do not change direction!

We now want to formulate a method to find the eigenvalues of a matrix. We can
rewrite the expression into the form

(A − λI)v = 0.
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6. Quantum Mechanics

In the previous chapters, we have exploratively laid down the framework of the theory
of linear algebra. We have seen how vector spaces are defined and how linear func-
tions behave as carriers between these vector spaces. We have seen that these linear
functions naturally provoke the notion of a matrix, which we have studied extensively.
We declared many operations on matrices, such as the determinant and the transpose,
and we found many properties, such as invertibility, unitarity and hermicity. We de-
veloped a framework to find the so-called eigenvectors and eigenvalues of matrices.
At last, we found that we could define a canonical dual space to a vector space that
hosts the linear functions acting on the vectors. Coincidentally, these dual spaces have
remarkable properties and can even be used to define inner products.

It is now time to apply this grand theory to quantum mechanics.

6.1. The Postulate of Quantum

We begin with a postulate that is the backbone of quantum mechanics.

Postulate 6.1. Every quantum system has an associated complex vector space H.

For our purposes, we will assume that this vector space H is also a Hilbert space,
which means that H has an associated inner product. We will denote the vectors of the
Hilbert space as |ψ⟩ ∈ H, and we often refer to these vectors as kets, following Dirac.

The nature of H differs for different quantum systems. For example, when we
consider the spin of a single electron, the crucial vectors are the spin up ket |↑⟩ and the
spin down ket |↓⟩ (equivalent to the qubit states |0⟩ and |1⟩). The Hilbert space is thus
two-dimensional, with a basis given by {|↑⟩ , |↓⟩} and an arbitrary ket in the Hilbert
space is given by |ψ⟩ = z |↑⟩+ w |↓⟩ for z, w ∈ C.3

But if we wish to describe the x position of the electron instead, then we find that
a finite-dimensional Hilbert space will not suffice. Any position on the x-axis should
be represented by a vector, and the last time the authors checked, the reals do not
appear to be discrete. Infinite-dimensional Hilbert spaces require extraordinary care
and precision, lest one drown in the subtleties and nuances. We will try to avoid them
as such.

We must be a bit careful when we discuss the Hilbert space vectors. Often, we
want to think of vectors like arrays, just as we do for vectors in Rn. For the spin of the
electron, we can, for example, represent the kets as,

|↑⟩ =
(

1
0

)
and |↓⟩ =

(
0
1

)
.

From this, we see that we could describe the Hilbert space H with C2.
But more often than not, we cannot represent a ket using an array. The example

immediately fails when we consider a system with more than one electron, say two,
where the ket is now described as a tensor product between the spin directions of either
electron. If both electrons were to be in an up spin, the ket would be given by |↑⟩ ⊗ |↑⟩,

3To be able to talk about physical states, we require one more condition. Namely that two vectors
different only by a scalar multiplication represent the same state. Thus, a ket/vector is an element in the
Hilbert space, whereas a physical state is a line in the Hilbert space.
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whereas if the first electron has spin up and the second electron has spin down, then
the ket is given by |↑⟩ ⊗ |↓⟩. In other examples, the states are instead represented by
matrices or even spinors. This is why it is important for us to consider the vectors as
abstract elements of the vector space and not as arrays of numbers.4

6.2. Quantum Mathematics

In the previous section, we have given a brief introduction based on a defining postu-
late. Here we recap and expand on the mathematical set-up of quantum mechanics.

We begin with a complex Hilbert space H associated to some physical system. The
vectors in this Hilbert space are written as kets |ψ⟩ ∈ H. Physical states are rays in the
Hilbert space, i.e. both |ψ⟩ , |ψ⟩′ ∈ H with

|ψ⟩ = z
∣∣ψ′〉

for some z ∈ C, represent the same physical state.5 This gives us the freedom to choose
a vector on the ray to represent the physical state. We often choose a normalised vector,
because this will make the manipulations a lot simpler. Normalisation can be defined
using the inner product ⟨·, ·⟩ : H×H → F of the Hilbert space H. For a state |ψ⟩ ∈ H,
the inner product ⟨|ψ⟩ , |ψ⟩⟩ is a real number representing the squared length of the
vector |ψ⟩. Thus we define the normalised vector as∣∣ψ′〉 = |ψ⟩√

⟨|ψ⟩ , |ψ⟩⟩
.

It follows that ⟨|ψ′⟩ , |ψ′⟩⟩ = 1, which is precisely what we want.
We can consider the linear functionals of the Hilbert space H, which is, of course,

the dual space H∗. The elements of the dual space, i.e., functions that take vectors to
C, are denoted in the Dirac notation as bras ⟨ϕ| ∈ H∗. The functional ⟨ϕ| acting on a
vector |ψ⟩ is then denoted as ⟨ϕ| (|ψ⟩) = ⟨ϕ|ψ⟩ ∈ C. This is a different way to write
the inner product.6

We can take a vector |ψ⟩ ∈ H to a dual vector ⟨ψ| ∈ H∗ using the adjoint, (|ψ⟩)† =
⟨ψ|, and inversely, (⟨ψ|)† = |ψ⟩. We can thus write the normalisation condition of a
vector ψ ∈ H as ⟨ψ|ψ⟩ = 1.

Linear functionals of kets are bras, but it turns out that linear functions A : H → H
also serve an important role in quantum mechanics. These linear functions are called
operators.7

Though the quantities |ϕ⟩ |ψ⟩ and ⟨ϕ| ⟨ψ| do not make sense (a vector-vector multi-
plication is not defined, nor is a function-function operation), the quantity |ϕ⟩ ⟨ψ| does
make sense! This is an object that, when acted upon by a ket |φ⟩, returns another vector
|ϕ⟩ ⟨ψ|⟩ φ = (⟨ψ|φ⟩) |ϕ⟩. Thus |ϕ⟩ ⟨ψ| : H → H is an example of an operator A8.

As vectors go, we can expand any vector into basis vectors.9

4In order to write arbitrary vectors in the Hilbert space as arrays or matrices, we formally need to
seek aid in representation theory.

5This is, of course, an equivalence relation where the equivalence classes are one-dimensional sub-
spaces of the Hilbert space H. This is akin to considering the projective Hilbert space PH.

6This is actually a definition: ⟨|ϕ⟩ , |ψ⟩⟩ ≡ (|ϕ⟩)† |ψ⟩ = ⟨ϕ|ψ⟩.
7There also exist antilinear functions, which act like A(cv) = cA(v). These are not relevant to our

discussion, but their existence should not go unnoticed. The time reversal operator is such an antilinear
function.

8This is not a double dagger, but a footnote.
9This footnote is merely because the author is curious on how the footnote symbol looks like.
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6.3. Hamiltonian

6.4. Position and momentum
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Patch notes

[Rem] January 1st at 2pm: Defined vector spaces and vectors in the formal (boring)
mathematical way with some fun examples and challenging exercises.

[Rem] January 2nd at 1am: Gave the vector spaces a basis; they should be happy
now.

[Rem] January 2nd at 4pm: We have unlocked dimensions now!
[Ash] January 2nd at 11:59pm: Wrote about maps between linear spaces, function-

als, matrices and their representations
[Rem] January 2nd at 11pm: Quantum mechanics is a fact now. We would have

been the first to discover it if no one else was before us.
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