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1. Introduction

This short paper aims to provide an overview of the concept of differentiation of func-
tions in one and more dimensions. This is by no means a sufficient introduction to the
mathematical field of analysis, but it suffices for a rapid familiarisation with the topic
at hand in the context of physical systems.

It begins to formally formulate the definition of a derivative and their rules, only
to extend this concept to various generalisations. Sufficient physical examples are pro-
vided to enhance the discussion and engage the reader’s mind. The paper ends by
considering derivatives in various fields in physics, among which quantum mechanics
and general relativity.

2. Normal derivative

2.1. Formal definition

Consider a continuous function f : R — R that takes a real number and outputs
another real number, i.e. f(x) = y for x,y € R. We recall (one of the many) definitions
of continuity for the reader’s sense of completeness.

Definition 2.1 (Continuity). Let f : R — IR be a function. Then f is said to be continuous
at a point c € R if the following three conditions are satisfied.

1. The value f(c) € R is well-defined;
2. The limit limy_,. f(x) exists, which is to say that lim,_,.+ f(x) = lim,_,.~ f(x) holds;
3. The limit equates as limy_. f(x) = f(c).

We say that the function f : R — R is continuous if f is continuous at all points ¢ € R.

Informally, this definition tells us that a function is continuous if you can draw its
graph without lifting your pencil, ensuring that there are no gaps or sudden jumps.
Admittedly, one would need to formally introduce the notion of a limit, but it is as-
sumed that the intuition behind a limit is sufficient to forgo the formal definition. You
may think of a limit lim,_,. f(x) as infinitesimally approaching the value f(c) (if de-
tined) by sending x to ¢, but never quite reaching it. There is always a nonzero differ-
ence between lim,_,. f(x) and f(c), though this difference keeps growing smaller and
smaller.
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Having discussed what continuity is, let us consider such a continuous function
f:R = R, and let x1, x, € R be two real numbers. We can describe the slope m € R
between the two points x; and x; as the ratio of how much quicker the function grows
compared to the original separation, namely

flo) = f(x1) _y2—w1 _ Dy

m = = —_= ,
X2 — Xq X0 —x1 Ax

where we define f(x1) = y; and f(x2) = y», and Ay = y» — y; and Ax = xp — x, to
recast the slope into a familiar form. This slope tells us how the function increases or
decreases between two points; it being quantified by a straight line with slope m.

But what if we are interested in the instantaneous change at some point, say at x €
R? How does f(x) change when we stay infinitesimally close to x? Evidently, we run
head-first into a problem, namely that the denominator of the definition of the slope
approaches zero! This is catastrophic, as the slope will approach infinity in value. Our
only hope is that f(x2) — f(x1) counteracts the divergence caused by x; — x1, yielding
a finite value for the slope m. This is precisely what motivates derivatives. We provide
a formal definition.

Definition 2.2 (Differentiability). Let f : R — R be a continuous function. We say that f
is differentiable at a € R if the limit

Lo fla+h) = f(a)

h—0 h
exists. The value of this limit is called the derivative of f at a, and we denote it as f'(a). We
say that f is differentiable (everywhere) when f is differentiable for every x € R and f'(x)
is called the derivative of f.

The expression for the derivative follows immediately from considering the slope
of the function between the points a and a + h where we then take the limit of sending
h to zero. Incidentally, derivatives describe a notion of change of the steepness of the
original function.

If the derivative f : R — R of a continuous function f : R — R is itself continuous,
then we could reapply the definition of the derivative, which, if well-defined, will
give the derivative f” of the derivative f’, also called the second (order) derivative
f"" of the function f. We then say that f is twice differentiable. We could repeat this
procedure to obtain higher order derivatives. If we can proceed indefinitely, we say
that f is infinitely differentiable or smooth, as it will be continuous and differentiable
no matter how many times we take the derivative.

Different notations for the derivative of a function f : R — R ata pointa € R aside

from the standard f’(a) include f ( ) or df ( ) (a) (seen a lot in Taylor expansions),
x=a

fM(a) (generalises easily to hlgher order derlvatlves), f(a) (usually when consider-
ing time), fy(a) (useful when considering multiple variables), and various types using
Df(a) or Dyf(a). One could exhaust a lifetime studying the different types of notation
used for derivatives.

Example 2.3. In physics, we describe the position of a box on a one-dimensional line
using the coordinate x € R. The velocity of the box is defined as the instantaneous
change of position with respect to time, thus defined as the der1vat1ve or x. The

acceleration is defined as the change of velocity with respect to time, 4 S Whlch can be

2 . .
expressed using the definition of velocity as a = ‘2{; = %% = %, or simply a = X.
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2.2. Properties

In a physics major, you see the definition of the derivative once and only once. Fortu-
nately for us, there are differentiation rules that significantly ease the process of taking
derivatives. We will briefly cover these rules here, giving the reader the opportunity
to prove them all using the limit definition of the derivative.

[properties]

3. Higher-Dimensional derivatives

In the previous section, we strictly considered a continuous function f : R — IR.
We would like to extend our formalism to deal with real vector-valued functions f :
R — R". The formal definition of the derivative of a vector-valued function f is eerily
similar, namely,

#x) — tim £ = £

h—0 h

The fun part is writing it out. A vector-valued function f : R" — R can be explic-
itly written as a vector, unsurprisingly, with n real-valued functions f; : R — R as
components,

f1(x)
Fxy = | P
fn(x)

The derivative follows then component-wise,

9f1(x)
ox

f’(x) = :
Ofn(x)
ox

Thus, taking the derivative of a vector-valued function just requires us to apply our
knowledge of derivatives of real-valued functions n-fold. There is not really much
news here to uncover.

Example 3.1. .

4. Partial derivatives

Having considered real-valued functions f : R — R and real vector-valued functions
f : R — %, it is but natural to consider real multivariable functions f : R" — R, or
f(x,y,z,...) where we now explicitly denote the input variables. In this case, it is quite
straightforward to define a derivative for a particular variable. We define the partial
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derivatives,
%:limf(x+hzy12,---)—f(X,y,Z,...)’
0xX  h—0 h
af _ limf(x,]/+h,z,...) —f(x,y,z,...),
dy  h—0 h
of _ hmf(x,y,z+h,...) —f(x,y,z,...),.
0z  h—0 h

The partial derivatives measure the change in a direction while holding all the other
variables constant. In some sense, you can simply ignore all the other variables while
taking the partial derivative, and you put them back later.

The fun part comes when considering more than one partial derivatives, more par-
ticularly when we try mixing them, for example,

azf(x,y,z,...) E)Zf(x,y,z,...) azf(x,y,z,...)
dx2 ’ dxady ’ dydx T

Example 4.1. .

4.1. Gradient

Let us consider a multivariable function f : R" — IR and explicitly write out the

variables as f(xq,...,x,). The partial derivatives are then given by %, a%,. .., %.

We could suggestively group these in vector notation as,

of
dx

9f
axz

o

0xy,

The previous observation actually motivates us to define the following operator,

I
R|OR[Q
N —_

Q|

Xn

This object is often called the del or the nabla; we will stick with the latter. It looks like
a vector, but formally it needs a function to operate on. Letting V act on our function
f :R" = R gives the required,

9 of
dxq dx
9 9f
Vf = J:Cz f _— aJ.Cz
; y
Xy Xy
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The combination Vf is called the gradient of f and it gives us a short-hand way of
grouping partial derivatives together. It is a vector-valued function representing the
derivatives in all the directions of the function f.

If we pursue our self-fed delusion of nabla being a vector, we can play with opera-
tions on vectors. For this, we need a vector-valued function with multiple variables.

4.2. Divergence

Consider a vector-valued multivariable function f : R" — IR" that can be explicitly
written as,

fl(xl,...,xn)
fa(x1,...,%Xn)

fu(xq, Xn)

We can consider the inner product of nabla and this vector-valued function. Recall that
the inner product of two vectors A, B is given by,

1 by
az by 3
A-B= : . : :ﬂ1b1+ﬂ2b2+...ﬂnbn:Zﬂibi.
: : i=1
an b,

The inner product of V and f is thus given by

d
@ fi(xy, ..., xn)
v.f=|™|. fax1, ..., xn) :8f1(x1,...,xn)+___+afn(x1,...,xn)
aX1 axn
ain fu(x1, ..., xn)
_ iafi(xl,...,xn)

i—1 8x1-

The inner product V - f is called the divergence of f. It is the sum of the partial deriva-
tives and is thus a real-valued function of the coordinates. What does it mean? Well,
at any point in your space, it tells you whether more derivatives are toward the point
or away from the point, which is quantised by the sign of V - f. In other words, if the
divergence is negative, the function behaves like a sink around the point, guiding the
surrounding points towards the original point if the system were to be dynamic. If the
divergence is instead positive, the function behaves as a source, pushing the surround-
ing points away from the original point. In essence, the divergence describes whether
a point gives or takes from the vector field.

4.3. Curl

Another operation we can induce on vectors is the cross-product. For this, we can
only consider three-dimensional (or seven-dimensional, but that is for another day)
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functions, f : R® — R?, which is explicitly written as,

fx(x,v,2)
fxyz)= | fy(xyz)
f2(x,y,2)

The cross-product between two vectors A and B is defined as

aq b arbz — azb;
AXB=|ay| X bz = a3b1 — a1b3
a3 bs a1by — azby

Using the cross-product, we can act with nabla on the three-dimensional vector-
valued function f to obtain,

9 fy _ 9f
ax fx(x,y,2) 9y
VX f= ? x| fy(xy,2) | = %-%
= fZ(-x/ ]//Z) % — ﬁ
Z ay dx
(]
4.4. Laplacian
4.5. d’Alembertian

4.6. Maxwell equations

5. Quantum derivatives

6. Covariant derivatives

In general relativity, it turns out that partial derivatives are not sufficient to describe
changes while respecting the structure of spacetime. To see why, we briefly need to
define a tensor as an object that transforms as a tensor. More specifically, a tensor is an

. . . /
object T Hk that transforms under a coordinate transformation x* — x* as,
] V1...]

! ! v v
_oxM1 oxfrox"t ox IT’”"’”"
v1...Vp

! /
e = e ——
VieVp dxM o dxPk gxt 9av

Here, we use the Einstein convention, in which any repeated indices are summed over
(in this case, the unprimed ones). In any equation, you can easily notice the mathemat-
ical validity of said equation by comparing free indices on either side (in this case, the
primed ones).

Anything that transforms in this way is called a tensor. In particular, for a vector
V#, we have the simpler transformation law, namely that it is an object that transforms
as a vector,

v = aiﬂ/v#.
oxH
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For the partial derivative d;,, we have the well-known chain rule under which it trans-
formes,
5, o  oxt 9 _axVa
K oxl T ox axk gai

We can now consider the partial derivative acting on a vector d,V". The transformation
for this can be calculated readily,

v = Dy B D (EW’VV)

- oxt = oxt oxt \ oxv
_oxtox” 9, axt Px
T oxt oxV oxH oxt Oxvoxt

Cavar o R
—oxt oxv oxH dxvoxH

We used the product rule in the third equality. Notice that

V/
oxt dx v

v oA o
ay/V # 7 oxt u

because of the additional term, which means that d,,V" does not transform like a tensor
and thus cannot be a tensor. The partial derivative fails its purpose and requires an
adjustment. The resolution to this problem is found by defining the so-called covariant
derivative, such that

ViV’ =0,V + T}, V%,

where FZ ) are called the Christoffel symbols. Notice that these symbols are not ten-
sorial by construction, as they ought to cancel out the nontensorial part of the trans-
formation. By explicitly transforming V,, V", you can get an explicit expression for the
Christoffel symbols F; A
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